1)專門用于探測的測試焊盤的直徑應該不小于0.9mm 。2) 測試焊盤周圍的空間應大于0.6mm 而小于5mm 。如果元器件的高度大于6. 7mm,那么測試焊盤應置于該元器件5mm 以外。3) 在距離印制電路板邊緣3mm 以內不要放置任何元器件或測試焊盤。4) 測試焊盤應放在一個網格中2.5mm孔的中心。如果有可能,允許使用標準探針和一個更可靠的固定裝置。5) 不要依靠連接器指針的邊緣來進行焊盤測試。測試探針很容易損壞鍍金指針。6) 避免鍍通孔-印制電路板兩邊的探查。把測試頂端通過孔放到印制電路板的非元器件/焊接面上。
一個高明的CAD工程師需要做的是:如何綜合考慮各方意見,達到最佳結合點。以下為EDADOC專家根據個人在通訊產品PCB設計的多年經驗,所總結出來的層疊設計參考,與大家共享。 PCB層疊設計基本原則 CAD工程師在完成布局(或預布局)后,重點對本板的布線瓶徑處進行分析,再結合EDA軟件關于布線密度(PIN/RAT)的報告參數(shù)、綜合本板諸如差分線、敏感信號線、特殊拓撲結構等有特殊布線要求的信號數(shù)量、種類確定布線層數(shù);再根據單板的電源、地的種類、分布、有特殊布線需求的信號層數(shù),綜合單板的性能指標要求與成本承受能力,確定單板的電源、地的層數(shù)以及它們與信號層的相對排布位置。單板層的排布一般原則:A)與元件面相鄰的層為地平面,提供器件屏蔽層以及為頂層布線提供回流平面;B)所有信號層盡可能與地平面相鄰(確保關鍵信號層與地平面相鄰);C)主電源盡可能與其對應地相鄰;D)盡量避免兩信號層直接相鄰;
這里主要是說了從PCB設計封裝來解析選擇元件的技巧。元件的封裝包含很多信息,包含元件的尺寸,特別是引腳的相對位置關系,還有元件的焊盤類型。當然我們根據元件封裝選擇元件時還有一個要注意的地方是要考慮元件的外形尺寸。引腳位置關系:主要是指我們需要將實際的元件的引腳和PCB元件的封裝的尺寸對應起來。我們選擇不同的元件,雖然功能相同,但是元件的封裝很可能不一樣。我們需要保證PCB焊盤尺寸位置正確才能保證元件能正確焊接。焊盤的選擇:這個是我們需要考慮的比較多的地方。首先包括焊盤的類型。其類型包括兩種,一是電鍍通孔,一種是表貼類型。我們需要考慮的因素有器件成本、可用性、器件面積密度和功耗等因數(shù)。從制造角度看,表貼器件通常要比通孔器件便宜,而且一般可用性較高。對于我們一般設計來說,我們選擇表貼元件,不僅方便手工焊接,而且有利于查錯和調試過程中更好的連接焊盤和信號。其次我們還應該注意焊盤的位置。因為不同的位置,就代表元件實際當中不同的位置。我們如果不合理安排焊盤的位置,很有可能就會出現(xiàn)一個區(qū)域元件過密,而另外一個區(qū)域元件很稀疏的情況,當然情況更糟糕的是由于焊盤位置過近,導致元件之間空隙過小而無法焊接,下面就是我失敗的一個例子,我在一個光耦開關旁邊開了通孔,但是由于它們的位置過近,導致光耦開關焊接上去以后,通孔無法再放置螺絲了。另外一種情況就是我們要考慮焊盤如何焊接。在實際過程中我們常按一個特定的方向排列焊盤,焊接起來比較方便。元件的外形尺寸:在實際應用當中,一些元件(如有極性電容)可能有高度凈空限制,所以我們需要在元件選擇過程中加以考慮。我們在最初開始設計時,可以先畫一個基本的電路板外框形狀,然后放置上一些計劃要使用的大型或位置關鍵元件(如連接器)。這樣,就能直觀快速地看到(沒有布線的)電路板虛擬透視圖,并給出相對精確的電路板和元器件的相對定位和元件高度。這將有助于確保PCB經過裝配后元件能合適地放進外包裝(塑料制品、機箱、機框等)內。當然我們還可以從工具菜單中調用三維預覽模式瀏覽整塊電路板。對于元件的選擇,除了要依據設計要求外,還要選擇正規(guī)廠家所生產的產品,這樣才能保證實現(xiàn)你的設計目標。
一、沉金板與鍍金板的區(qū)別二、為什么要用鍍金板隨著IC 的集成度越來越高,IC腳也越多越密。而垂直噴錫工藝很難將成細的焊盤吹平整,這就給SMT的貼裝帶來了難度;另外噴錫板的待用壽命(shelf life)很短。而鍍金板正好解決了這些問題: 1對于表面貼裝工藝,尤其對于0603及0402 超小型表貼,因為焊盤平整度直接關系到錫膏印制工序的質量,對后面的再流焊接質量起到決定性影響,所以,整板鍍金在高密度和超小型表貼工藝中時常見到。2在試制階段,受元件采購等因素的影響往往不是板子來了馬上就焊,而是經常要等上幾個星期甚至個把月才用,鍍金板的待用壽命(shelf life)比鉛錫合金長很多倍所以大家都樂意采用。再說鍍金PCB在度樣階段的成本與鉛錫合金板相比相差無幾。但隨著布線越來越密,線寬、間距已經到了3-4MIL。因此帶來了金絲短路的問題:隨著信號的頻率越來越高,因趨膚效應造成信號在多鍍層中傳輸?shù)那闆r對信號質量的影響越明顯:趨膚效應是指:高頻的交流電,電流將趨向集中在導線的表面流動。根據計算,趨膚深度與頻率有關:鍍金板的其它缺點在沉金板與鍍金板的區(qū)別表中已列出。
專業(yè)電路板組裝測試如果阻抗變化只發(fā)生一次,例如線寬從8mil變到6mil后,一直保持6mil寬度這種情況,要達到突變處信號反射噪聲不超過電壓擺幅的5%這一噪聲預算要求,電路板組裝測試阻抗變化必須小于10%。這有時很難做到,以 FR4板材上微帶線的情況為例,我們計算一下。如果線寬8mil,線條和參考平面之間的厚度為4mil,特性阻抗為46.5歐姆。線寬變化到6mil后特性阻抗變成54.2歐姆,阻抗變化率達到了20%。反射信號的幅度必然超標。至于對信號造成多大影響,還和信號上升時間和驅動端到反射點處信號的時延有關。但至少這是一個潛在的問題點。幸運的是這時可以通過阻抗匹配端接解決問題。如果阻抗變化發(fā)生兩次,例如線寬從8mil變到6mil后,拉出2cm后又變回8mil。那么在2cm長6mil寬線條的兩個端點處都會發(fā)生反射,一次是阻抗變大,發(fā)生正反射,接著阻抗變小,發(fā)生負反射。如果兩次反射間隔時間足夠短,兩次反射就有可能相互抵消,從而減小影響。假設傳輸信號為1V,第Y次正反射有0.2V被反射,1.2V繼續(xù)向前傳輸,第二次反射有 -0.2*1.2 = 0.24v被反射回。再假設6mil線長度極短,兩次反射幾乎同時發(fā)生,那么總的反射電壓只有0.04V,小于5%這一噪聲預算要求。因此,這種反射是否影響信號,有多大影響,和阻抗變化處的時延以及信號上升時間有關。研究及實驗表明,只要阻抗變化處的時延小于信號上升時間的20%,反射信號就不會造成問題。如果信號上升時間為1ns,那么阻抗變化處的時延小于0.2ns對應1.2英寸,反射就不會產生問題。也就是說,對于本例情況,6mil寬走線的長度只要小于3cm就不會有問題。